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LOCATING AN APPROPRIATE SADDLEPOINT

FOR M-DIMENSIONAL PROBABILITY INTEGRALS
INTRODUCTION

The M-dimensional (MD) moment generating function (MGF) for M
dependent random variables (RVs) of interest can sometimes be
found in closed form; for example, see references 1 and 2.
However, this joint MGF is usually not the desired end product of
an analysis. Instead, its MD inverse Laplace transform, namely,
the joint probability density function (PDF), might be the
quantity of interest. Alternatively, the joint MGF might be
weighted by an MD function prior to performing the MD inverse
Laplace transform, thereby yielding the joint cumulative
distribution function, or the joint exceedance distribution
function, or some other statistics of the RVs of interest; see
reference 2, equation (18) and examples 1 through 7 for several

informative illustrations of this general approach.

Since the joint MGF frequently exists only in strips of
analyticity in its MD domain, the MD Bromwich contour (BC) for
returning to the probability domain must initially be taken in
this region of existence of the joint MGF. However, at least for
one-dimensional problems, M = 1, the MGF can be analytically
continued outside this strip, and the original BC can be moved to

a more attractive region of the complex plane, taking advantage




of possible saddlepoints (SPs) and/or paths of steepest descent
of the analytic continuation of the MGF. 1In fact, for many
one-~dimensional examples, an exact result for the first-order PDF
can be obtained by moving the BC to an appropriate valley at
infinity, while accounting for any residues of poles or essential

singularities traversed during the contour movement.

For M dimensions, the situation is much more complicated.
The analytic difficulties associated with multiple complex
domains and the movement of multiple contours discourages and
often prevents any useful improvement in trying to move the BCs
out of their original MD domain of definition. 1Instead, a more
fruitful approach is to try to find a single dominant SP of the
pertinent integrand in the original MD strip of analyticity and
develop a saddlepoint approximation (SPA) (plus a correction term
if possible) about this point in MD space. However, it should be
noted that there is a question about\the existence of an SP in
the original strip of analyticity; this problem will be

illustrated in this report later.

Even if a single dominant SP exists in the MD strip of
analyticity, thefe remains the numerical problem of specifying
and quantifying its location in complex MD space. It will be
shown that this MD search procedure can be restricted to MD real
Space on a real scalar function that has a monotonic, bowl-like

behavior, thereby guaranteeing a single minimum in MD space.




LOCATING AN APPROPRIATE SADDLEPOINT IN MOMENT GENERATING

SPACE FOR EVALUATION OF A PROBABILITY DENSITY FUNCTION

Let MD real vector z = [z, --- zM]T} Scalar function p(z) is
an MD joint PDF; that is, p(z) is real, nonnegative, and has unit
volume in MD z space. Let MD complex vector \ = xr + i xi in
terms of its real and imaginary MD component vectors, xr,xi. The

MD Laplace transform of p(z) is denoted as the scalar joint MGF
T
4(N) = j dz plz) exp(AT z) . (1)

For X\ purely real, that is, xi = 0, it is presumed that integral
(1) converges for real vector Xr in an MD real region Rﬂ that
includes the origin, xr = 0, as an interior point in MD kr space.

The joint MGF p(xr) is obviously positive real for all Xr € R”.

It follows that if y(xr) exists, then MGF u()\) = y(xr + i Xi)

also exists for all Xi' as seen from the relation

. _ T . T
Ip(kr + i Xi)l = lj dz p(z) exp(kr z + i xi z]

< j dz p(z) exp(xf z) = w(A,) for all X, . (2)

This MD region of complex X is the region of analyticity of joint
MGF #(X) and is denoted by ROA(u); that is, ROA(u) is the MD set
of complex X\ values such that Re(\) ¢ R”' Joint MGF w()\) does
not exist outside of ROA(x), although its analytic continuation
(AC) may. A one-dimensional example is furnished by PDF p(z) =

% exp(-|z|) for all z; the corresponding MGF is w(\) = 1/(1-X2)

for -1 < X, < 1. The AC of w(\) is w () = 1/(1-)%) for all




A ¥ 1, at which points P#5c(X) has poles.

Equation (2) also indicates that, for a fixed real vector
Ar € Ru' the maximum value of ly(k)l anywhere on the M BCs,
A= kr + i Xi' is realized as all the contours simultaneously
cross the M real axes in )\ Space. An alternative interpretation
is that the real axes in ) Space are mountain ridges of joint MGF
Ip(X)l; any perpendicular departure from the real axes in any or
all of the M complex planes {xm} of vector )\, leads to a decrease

in |u(X)| when X ¢ ROA(u) .

The joint PDF p(z) at real MD field point z can be recovered

from the joint MGF u()\) according to inverse Laplace transform

1
(i2n)

p(z) = m f dx u(X) exp(-AT z) ' (3)

C
where MD contour C is a set of vertical BCs that stay in the

ROA(x). The integrand in equation (3) is denoted as
Y(X,z) = u(X) exp(-AT z) . (4)

The exponential can be expressed as exp(-k? z) exp(-i Xg z),
which retains a constant magnitude as vector Xi alone is varied.
Therefore, integrand Y(\,z) in equations (4) and (3) realizes its
maximum magnitude on the BCs at the real points where the
individual contours all cross the real axes in )\ space.
Therefore, the major contribution to integral (3) is expected to

occur in the neighborhood of the points where the M BCs cross the




real axes in M\ space.

Since Cauchy’s integral theorem states that the value of
integral (3) is the same for any set of vertical BCs in the
ROA(w), it is possible to choose, for the crossing point, that
MD real point in xr space where the positive real integrand
Y(xr,z) is a global minimum; this MD real point is identified as
i = i(z). All other axis crossingsAencounter a larger peak
magnitude of integrand ¥(X,z), and therefore must also encounter
more oscillations in the integrand away from the crossing point
in order to compensate and maintain the identical integral value
for PDF (3) at that z value. Selection of the crossing point i(z)
as the minimum of real integrand Y(Xr,z) essentially minimizes
the oscillations of complex integrand Y(X,z) on the vertical BCs
in the neighborhood of the crossing point and partially realizes
the steepest decay of the magnitude of the integrand
Y(i + i xi,z). However, the selection of the location of the
minimum of Y(Xr,z) as the crossing point i to be used for the
BCs is not mandatory; it is taken mainly for convenience and
simplicity. An alternative for a one-dimensional example

involving a branch point (BP) at the border of R” is given in

appendix A.

This particular real axes crossing point, A(z), is the
location of a maximum of |Y¥(X,z)]| along every BC, and is the
location of a simultaneous minimum of Y(Xr,z) along every real

axis in X space. If all the slopes of Y(Xr,z) are zero at




A = X(z), this crossing point is an SP in MD X\ space. Thus,

3§— Y(X,z) = 0 for m=1:M , i real , (5)
n -
A

specifies the location of a real SP in R”. This set of M
simultaneous, nonlinear real equations must be solved numerically

for real )\ ¢ Rﬂ; if a solution exists, X\ = A(z) is a function of

the field point z of interest.

If equations (3) and (4) are combined, there follows

p(z) = —— [ ax expla(r,2)] , (6)
(i2n) C
where
Alx;z) = 1n ¥(\2) = 1n (X)) - AT 2 = x(n) = 2T 2, (7)

and where X(\) is the joint cumulant generating function (CGF)
corresponding to joint MGF w(\). The Hessian matrix (HM) of
joint CGF X(\) is the MxM matrix of second-order partial
derivatives of X(\) with respect to {Xm}, m=1:M, which are the M
complex components of MD vector A. It can be seen from equation
(7) that the HM of A(X,z) is identical to that of X{(X\), and is
independent of field point z. It is shown in appendix B that the
HM of joint CGF x(\) is positive definite (PD) for A\ real and in
R”. Therefore, the HM of A(A,z) in equation (7) is also PD for X\

real and in R”. This means that A(Xr,z) has positive curvature

for all Xr € R”; that is, A(Xr,z) has a bowl-like behavior and




can have, at most, one minimum for Xr € R”. More details are

presented in appendix C.

From equation (7), since the integrand of equation (6) is
related to A(Xr,z) by the monotonically increasing transformation
Y(Xr,z) = exp[A(Xr,z)], the same bowl-like property carries over
to the integrand. That is, real positive integrand Y(xr,z) can
have, at most, one minimum for Xr € R”. The location of this
minimum (if it has zero slopes as required by equation (5)) is
the unique real SP of ¥(X,z) in the ROA(s). This real SP A(z)
can be used to connect the valleys of the integrand Y(A,z) at
A = +i® by means of BCs. Then, an SPA to p(z) at field point z

can be developed about this real SP A(z) in MGF space.

There may be other complex SPs of integrand Y(X,z) for X in
the ROA(w); a one-dimensional example is furnished by PDF p(z) =
A exp(-2z) [1 + cos(az)] for z > 0. For a =1 and z = 0.1, the
integrand ¥(\,z) has a real SP at i(z) = -8.8995 and a pair of
complex SPs at 0.4951 + i 0.70305, all of which are in the
ROA(y); namely, Xr < 1. The AC of ¥Y(),z) has another pair of
complex SPs at A(z) = 1.4547 + i 0.68369 that are outside the

ROA(u). More details on this example are furnished in appendix D.

For some values of z, a real SP of ¥(A,z) may not exist in
the ROA(u). For example, for one~dimensional PDF p(z) = exp(-2)
for z > 0, then MGF u(A) = 1/(1 - \) for Xr < 1. Then, if field

point z is taken negative, z < 0, the real integrand Y(xr,z) is a




strictly monotonically increasing function of Xr for all Xr in
(-=,1) and never has zero slope there. This particular value of
z is unfeasible; that is, =z corresponds to a zero value for the
PDF p(z). The case of z = 0+ has an SP at Ar = -, Figure 1

illustrates this behavior for function A(Xr,z).

But, even if field point z is a feasible point, the integrand
Y(X,z) may still not have a real SP in R”, even though Y(Xr,z)
has a unique minimum for Xr € R”. A one-dimensional example of
this situation is furnished by the PDF p(z) = a exp(-z)/(1+z)™
for z > 0. More details on this example are given in appendix E.
Thus, each candidate real solution of equation (5) must be
tracked as the search for the unique real SP in Rﬂ develops
in order to ensure that the search is not tending to infinity or

attempting to get out of region R”.

™
\.

A()\'n Z) o - \
z=0 |
2 P
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Ar
Figure 1. Logarithm of Integrand for Exponential PDF




LOCATING AN APPROPRIATE SADDLEPOINT IN MOMENT GENERATING

SPACE FOR EVALUATION OF A NONLINEARITY AVERAGE

The presentation in this section is somewhat similar to that
of the previous section and will be abbreviated. Supposé random
MD vector z is subject to an MD nonlinear transformation
g(u) = g(ul,...,uM), giving scalar output g(z). The average

of this random quantity is given by
a = E{g(2z)} = I du p(u) g(u) , (8)

where p(u) is again the joint MD PDF of RV z. Transformation
g(u) can be a function with additional parameters, such as the MD

field point z = Tzl ce zM]T of interest, as in

M
g(u) = E Ulup - 2p) (9)

where U( ) is the unit-step function, or the power-law values
{vm} in a transformation such as
M vm
g(u) = ] l(u ) for u_ > 0 , m=1:M . (10)
m=i ' B m
Then, the average a in equation (8) will be a function of these
additional parameters. Function g(u) is presumed to be real and
nonnegative for all u; however, g(u) need not have finite volume
in u space, as illustrated by the two examples above. Additional

interpretations and examples are given in reference 2.




The MD Laplace transform of nonlinearity g(u) is denoted by
v(\) = | au g(u) exp(-2T ) (11)

with a minus sign in the exp( ); this minus is in contrast to the
Laplace transform for the joint MGF u(\) in equation (1), where a
Plus sign was used. For A\ purely real, that is, Xi = 0, it is
presumed that integral (11) converges for kr in an MD region Ry.

The function y(xr) is obviously positive real for all xr > Ry.
It follows that if y(kr) exists, then y(\) = y(kr + i xi)
also exists for all xi, as seen from the relation
R T . T
ly(xr + i Xi)l = lj du g(u) exp(—)\r u - i Xi u]l
< _[ du g(u) exp(—)\T u) = v(A.) for all A. . (12)
= r r i

-This MD region of complex )\ is the region of analyticity of y(\),
which is denoted by ROA(y); that is, ROA(y) is thé MD set of
complex A\ values such that Re(\A) ¢ RY. Function y()\) does not
exist outside of ROA(vy), although its AC may. For example,

function (9) yields
T M
v(X) = exp(-\" z) | I(Xm) for Re(xm) >0 , m=1:M . (13)
m=1

That is, ROA(y) here consists of the right halves of the M

complex planes {Xm}, m=1:M.

10




Equation (12) also indicates that, for a fixed real vector
A\; € R, the maximum value of |v(X)| anywhere on the M BCs,
A= Xr + i Xi' is realized as all the contours simultaneously
cross the M real axes in X\ space. Any perpendicular departure
from the real axes, in any or all of the M complex planes {km},

leads to a decrease in |y(\)| when X & ROA(y).

Substitution of relation (3) into equation (8) and an

interchange of integrals leads to an alternative result for

average a; namely,

a = —— [ax w0 vn) (14)

(i2n) C
upon use of equation (11) (see reference 2 for seve;al practical
applications). However, this MD contour C must now stay in the
intersection of ROAs; that is, A € ROA(y,vy) = ROA(y) N ROA(y) is
required in equation (14). Also, define the MD real region
R =R”ﬂRy.

MY

The integrand in equation (14) is denoted as
Y(X) = w(X) v(X) ' (15)

and will be a function of any additional parameters that
nonlinearity g(u) depends on; for example, see equations (9) and
(10). 1If MD contour C in equation (14) is taken as a set of BCs,

integrand Y(\) will realize its maximum magnitude on C at

11




the real points where the individual contours all cross the real
axes in X space. Therefore, the major contribution to integral
(14) is expected to occur in the neighborhood of the points where
the M contours cross the real axes in A\ space. This is the MD
point about which to develop an SPA for average a of equations

(8) and (14).

From equations (15) and (14), the logarithm of the integrand

is given by
ACX) = 1In ¥Y(X) = X(A) + 1n v()\) . (16)

For Xi = 0, it has been shown in appendix B that the HM of joint
CGF X(A) is PD for Xr € Rﬂ £ pr' Similarly, appendix F
demonstrates that the HM of 1n v(X) is nonnegative definite for
Xr € RY € R”Y. Therefore, the HM of sum A(X) in equation (16)

must be PD for kr € RﬂY. This observation follows from relation

v (A + B) v = v Av + vl B v, (17)

where v is an arbitrary real column vector, and A and B are real
square matrices. Notice that complex vector \ must satisfy the
restriction Re(\) ¢ R”Y, while Im(X) must be zero for the PD

property of the HM of A()A) to hold.

In the following sections, some practical problems where

these issues have relevance will be indicated.

12




JOINT MOMENT GENERATING FUNCTION OF M WEIGHTED
SUMS OF N INDEPENDENT RANDOM VARIABLES

Let {xn} be a set of N independent real RVs with arbittary

first-order (different) MGFs {px } and corresponding first-order

n
CGFs {xx }. That is,
n
pxn(k) = exp(A xn) , xxn(X) = 1ln pxn(k) for n=1:N , (18)

where the overbar denotes an ensemble average. The weighted sums

of independent RVs of interest are given by

N
Yp = 2 a,, X, for m=1l:m , (19)
=1

where M < N, and MxN real matrix [amn] is arbitrary except that

it must have rank M.

The joint MGF of RVs {ym} is, upon use of equations (18) and

(19) and the independence of RVs {xn},

Y730 O VR W
y 1 M m=1 ™ 5=i

M M N
2 [I % va) - 02 [T 2 I oy 5
m=

N M N
=TT exp[xn 2, apn km] = T_lr “y [bn(x)] , (20)

n=1 m=1

where Mxl vector A\ = [Xl cee XM]' and

M
b (X) = g;% ann Ay for n=1:N ; b(X) =a’ x . (21)

13




That is,

uy (V) (ban)) (22)

]
]
©
»

The joint CGF of RVs {ym}, using equation (18), is

[bn(x)) ) (23)

N
Xg(X) = 1n w () = %;% Xe_

There follows, by reference to equation (21),

ax, () N
—é{-——-= Y agy X5 (bg(M)  for mel:m . (24)

m n=1 n
Finally, the M simultaneous equations that must be solved for the
MD SP i are
a__ X’ [bn(x)) =y, for m=l:M , (25)

mn °x
n

o]
2=
[

where y = [y1 see yM]’ are the particular values (field point)
at which the joint PDF of RVs {ym} in equation (19) is to be
evaluated. The second-order partial derivatives required to

obtain the SPA follow from equations (24) and (21) as

2 .
3 xx(X) N "
= =1
A, B %;% 2nn 2nn Xxn[bn(X)J for m,m=1:M . (26)

Once SP X\ is found from equation (25), it can be substituted in

equation (26) and the MxM HM can be evaluated at the SP; namely,

vzxy(i).
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EXTENSION TO DISTORTED RANDOM VARIABLES

Suppose that each independent RV X, is the result of a

different nonlinear transformation according to

x, = h (x ) for n=1:N, (27)

where RV x  has known first-order PDF p (u). Then, the first-

order MGF of RV xn is

by (N = EXPR T - exp(X h(x)) =

= I du p_(u) exp(x hn(u)] for n=1:N , (28)

from which there follows

ue O = [ auw p (w) b (uw) exp(X b (w)) for n-1:N . (29)

If these 2N integrals in equations (28) and (29) can be evaluated

in closed form, then functions

Hy (X)
' = =1
xx (\) = RSN for n=1:N (30)
n x,

are available for use in the determination of the SP required in

equation (25). Otherwise, numerical integration could be used on

these one-~-dimensional integrals.
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PROBABILITY DENSITY FUNCTION OF THE MAXIMUM RANDOM VARIABLE
For M = 2, let scalar RV y = max(zl,zz). Let u = [u1 uZ]T,

Y = [y y]T, and real nonlinearities
gl(u) = 5(Y - ul) U(Y - uz) ’ 92(11) = 5(Y - uz) U(Y = ul) . (31)

Then, total nonlinearity g(u) = gl(u) + gz(u) is real and

nonnegative. The average corresponding to total nonlinearity

g(u) is
y Y
a = [ augtu) pyuw = [ du, pytyouy) + [ dup p tuy,y) o (32)

which is the PDF py(y) of scalar RV y = max(zl,zz) at argument y.

The corresponding gamma functions to gl(u) and gz(u) are

T

v (\) = eXp(-A ¥)  for Re(r,) < 0 , A, arbitrary; (33)
2
T

vo(A) = e_xL:;QQ for Re(\;) < 0 , X, arbitrary. (34)

The total gamma function corresponding to nonlinearity g(u) is

Y(X) = Yl(k) + YZ(X) for Re(Xl) < 0 and Re(XZY <0 . (35)

However, notice that combining the two individual gamma functions
together has forced a severe restriction on the allowed region in

A-space to investigate for an SP; namely,
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a = ?-1—;—“7 I X u_ () exp(_xly-xzy) [% + -_—%\I] , (36)

Cx

where component contours Cy and ¢, of CX must both pass to the
left of their origins. For Yy > 0, the restrictions to the
left-half X planes keep the real part of the argument of exp( )
positive; therefore, exp( ) is unable to track the rapidly
decreasing upper tail of the PDF of Y. The SP components
approach 0- in all M = 2 dimensions as threshold Yy increases, but
this is not sufficient to allow development of a rapid decrease
of the SPA on the upper tail of the PDF. See figure 10 of

reference 2 for an example of this limitation.

On the other hand, for nonlinearity gl(u) alone, the

contribution to average a is

o

which requires only that the kz contour pass to the left of its
origin. Then, the xl component of the SP can move into its
right-half plane and yield exponential decay of a, with y, even
when threshold y > 0. Conversely, for average ay, the XZ
component of the SP is free to move as needed. 1In this manner,
much better SPAs are obtained, as well as smaller correction

terms. The tradeoff is that M = 2 SPs must be located, instead

of a single SP for equation (36).
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In M dimensions, the m-th nonlinearity required to yield the

PDF of scalar RV y = max(zl,...,zM) is

M
gp(u) = 8(y - u_) I:I U(y - u ) for m=1l:M , (38)
nm

for which the corresponding gamma function is

M M
v (X)) = exp|-y )N (-x.) for m=1:M , (39)
20 = ey o) /T,
n¥m

provided that Re(kn) < 0 for n=1:M, n#m, while km is arbitrary.

Therefore, the m-th average

1 M M
ay = —— J ax wy(\) exp(-y )/ T T (40)
(i2m) (m) n=1 n=1
Cc n¥m

allows for the m-th component contour Cém) to move into the
right-half Xm—plane (for each m value in [1,M])) and thereby
realize significant exponential decay for a,r even if threshold
Yy > 0. On the other hand, an attempt to minimize the

computational effort and use total gamma function

M

YN =3 2 v (N, (41)
n=1

as in equation (36) for M = 2, would require that Re(km) < 0 for
all m=1:M, and thereby severely limit the capability of the

resulting SPA, especially for y > 0.
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JOINT STATISTICS FOR NORMALIZATION

Random vector x = [x1 v xM]' has arbitrary joint PDF pg and
joint MGF u. The individual RVs {xm} can be positive or

negative, and can be statistically dependent on each other.

GENERAL NORMALIZER

Scalar RV y may be statistically dependent on random vector
x; however, y is positive (for the time being). The first-order

PDF of y is py. The normalizer of interest forms the M ratios

X
- _ln. - .
z, = ¥ for m=1:M . (42)

The joint cumulative distribution function (CDF) of random vector

zZ = [zl soe zM]' using}y > 0 is

cz(zl,...,zM) = Prob(z1 < Zyreeer By < zM) =

Prob(x1 < Zy YreeorXy < Zy y) =

© Z,¥Y ZM

- [ay [ ax =

0 —-c0

Y
dxM pxy(xl""’#M'y)

@ zly ZMY
= J; dy py(y) I dx; - _[ dxy Py(xy,...oxyly = ¥) (43)

4 e

where p is the joint PDF of x and y, and px(xly = y) is the

Xy
conditional joint PDF of RV x at argument x, given that scalar RV

Y==Y.
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The joint PDF of normalizer vector output z follows from

equation (43), upon M partial differentiations, as

M
pz(zl,...,zM) = f dy y py(y) P, (2, Yieoorzy vly = v) (44)

0

= j dy yM pxy(z1 Yreoorzy v,¥) (45)
0
If joint PDF pxy can be determined, a one-dimensional integral

must be evaluated in order to obtain joint PDF P,-

If all the RvVs {xm} are statistically independent of scaling
Y used in normalizer ratios (42), then equation (44) simplifies

to

@
M
pz(zl,...,zm) = I dy y py(y) px(z1 Yreeor2y Y) . (46)
0
This result still requires a one-dimensional integral for its

evaluation.

If RV y can take on both positive and negative values, the
three integrals in equations (44) throﬁgh (46) are generalized to
the extent that the integrals over y are conducted from -» to +o,
and the term yM is replaced by Iylm. Determination of the
conditional PDF in the integrand of equation (44) can be very
involved; it may be safer and easier to use the form involving

the joint PDF in equation (45). 1In general, the analytic
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difficulty of determining joint PDF pxy prompts us to consider
specific forms of normalizers, and attempt to find the joint MGFs

of their outputs.

A SPECIFIC NORMALIZER

Let denominator scaling y in normalizer ratios (42) be formed
by linear weighting of random vector x according to
M
Yy = « E Xp t W, (47)
m=1
where scalar RV w is independent of x. For example, w might
involve averaging additional RVs {xm}, m > M, which are
independent of {xm}, m=1:M. The MGF of scalar RV w is Heoge
Observe that numerators {xm} are statistically dependent on

denominator y in normalizers (42) and (47); the one exception is

when o« = 0 in equation (47).

It is presumed that scalar RV Y is always positive. Then,
upon substitution of equation (47) into equation (42), the joint

CDF of normalizer output z is

cz(zl,...,zM) = Prob(xl < z, y,...,xM < Zy y) =

Prob(z1 Yy - x> 0,...,zM Y - x> 0) =

Prob(v1 >0,...,v, > 0) , (48)

M

where RVs
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M
m=1 - -

=) am Xn * 2 W for m=l:M . (49)

Alternatively, with z = [zl,...,zM]', the random vector
v = [v1 v vM]' =A X+ 2w, (50)

where MxM matrix

A= A(z,a) = [amE] = a diag(zl trrozy) 1 -1y, (51)
and 1 is an MxM matrix of all ones.

The joint MGF of random vector v is

yv(k) = exp(A’'v) = exp(A'Ax + \'zw) =

= exp(x’ b(X)) exp(\'zw) = 4y (b(X)) b 2'X) (52)

using the independence of random vector x and random scalar w,

and defining Mxl vector

M
b(\) = ar')\ ; b () = ;;1: aEm x_@ for m=1:M . (53)

It is also presumed above that b(\) ¢ ROA(ux) and that
z'\ € ROA(pw). Finally, the joint CDF of normalizer output 2z

follows from equations (48) and (52) as (see reference 2)
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c.(z) = e (0) = —L _ j---j ax u_(\) TﬂT<x ) =
Z v (i2n)M v m=1 m

Cr
. TT
==L _[...] ax u (b(N)) w (z'N) (A ) . (54)
(i2m™ c x w m=1 O
r

In the special case where RVs {xm} are independent of each
other, but not necessarily identically distributed, the joint MGF

required in equation (54) becomes

M

u (b(X)) = T:I pxm[bm(x)) (55)

in terms of the individual MGFs {yxm} of RVs {xm}. Notice that
the statistical dependence of all the RVs {xn}, n=1:N, on
denominator RV y in equations (42) and (47) is fully accounted
for in equations (54) and (55), basically through MxM matrix A in

equation (51) and Mxl vector b()\) in equation (53).

For general RVs {xm}, if the additional RV w in normalizer
denominator y in equation (47) is zero, then ”w(u) = 1 for all u;
this simplifies the evaluation of equation (54). However,

observe that A = A(z,a), leading to
b(X) = A(z,a)’ X = b(z,«,)\) , (56)

through equation (53). On the other hand, if w is a nonzero
constant, then its MGF is simply pw(u) = exp(wu), thereby leading

to the term exp(wz’)\) in equation (54) for pw(z'X).
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Alternatively, if scale factor o = 0 in equation (47), then

matrix A in equation (51) is —Iys and equation (53) yields

b(X) = -\. Then, equation (54) yields joint CDF
i ] ”
c _(z) = el AN p (=X) pw. (z'N) (X)) . (57)
2 (izm™ x v m=l ™
r

If RVs {xm} are independent of each other, there follows

M
U (=N = T Ty (-0 . (58)

ALTERNATIVE PDF APPROACH

In equation (49), define RVs

M
u = E;% amE xE for m=1:M . (59)

Since this is a one-to-one transformation, the joint PDF p, can

be immediately found from joint PDF Py- Then, for w > 0,

equations (48) and (49) take the form
cz(z) = Prob(u1 > -2z w,...,uM > ~Zy w) =

= j dw p_(w) eu(-2, Wieeormzy W), (60)
0

using the independence of vector u and RV w, as well as the joint

exceedance distribution function €,: The corresponding joint PDF

is
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pz(z) = J dw wM pw(w) pu(—z1 Wyeoor=2Zy w) , (61)
0

which agrees with equation (46) under a re-identification of

variables.
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IMPROVING THE ACCURACY OF THE M-DIMENSIONAL
SADDLEPOINT APPROXIMATION BY MEANS OF GAUSS QUADRATURE

Let x =-[xl e+ x.]’ be an MD RV with joint MGF

m)
ux(X) = exp(A’'x), where vector X\ = [Xl e XM]'. Then, the joint
PDF of x at MD field point x = [x1 s xM]’ is given by the M-th

order integral

= ———l-ﬁ J dx exp(-X'x) w (X) , (62)
C

where BC C is parallel to the imaginary axis in each of the M
dimensions. The joint CGF of x is xx(X) = 1ln px(X). The
MD SP of the integrand of equation (62) is that real point

A = X(x) nearest the origin where all M partial derivatives

satisfy

X, (N)

axm

=X for m=1:M . (63)

)
When the contour C is moved in M dimensions so as to go through

the SP, and the change of variable

A=Xx+1t, t = [tl X tM]' . ' (64)
is made, equation (62) becomes
p(x) = (2m)™ exp(-Ax) Idt exp(-it'x) u_(A+it) , (65)

where the new contour passes through the SP of the integrand of

equation (65), which is now at t = 0.
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The logarithm of the integrand of equation (65) can be

expanded in a power series about the origin according to
In{exp(-it’x) u (A+it)} = —it’x + X (A+it) =
= itrxo+ X, (0 + 3t o (0 - L £ H (X t, (66)

where MxM matrix

azxx(X)
r MmM,m=1:M , (67)

H_ (\) =
x [axm 352

is symmetric in m and m for all X. Thus, using equations (66)

and (63), the integrand of equation (65) can be approximated as

ne

exp(-it’x) px(i+it) exp(xx(i) - % te nx(i) t) (68)

for small |t|. If this approximation is now extrapolated to all
t and substituted in equation (65), there follows the usual SPp

(or tilted Edgeworth) approximation in M dimensions:

exp(xx()\)—k'xJ J‘dt exp(_ % tr Hx(;\) t) =

(2m)™

e

px(X)

- exp(xx(i)—i'TJ ;X = A(x) . (69)
(2m)"/2 cilet(nx(x))!5 '

The extrapolation of approximation (66) to all t was done for
purposes of analytically evaluating the MD integral in equation

(65). 1f, instead, the MD change of variable
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¢t = Hx(i)‘;i s (s is Mxl) (70)

is made in equation (65), there follows the exact PDF form

exp(xx(i)—i'xJ

L 1, (71)
(2m™2 det (m,00)*

px(X) =

where the multiplicative M-fold integral is

I = (2n)—M/2 J ds'exp(—i s’ Hx(i)—% x

] yx[i + 18 (X)) s)

= . (72)
My (X)

The integrand of this latter integral behaves as exp(-s’s/2) near
the SP at the origin of s space; this leads to the earlier

1.

ne

approximation above, namely, I

For one-dimensional integrals in x that behave as exp(-a xz)
near the origin, the use of Gauss quadrature (reference 3, page
924) suggests itself as a good candidate for high accuracy with
few integrand evaluations. This quadrature approach can be
readily extended to M dimensions by simply repeating the
one-dimensional rule for each of the M dimensions under
investigation. This is consistent with the fact that integral
(72) has been transformed, and for which the integrand behaves
similarly in all dimensions, namely as exp(-si/Z) in the m-th
dimension, at least near the SP at the origin s = 0. The
numerical question to answer in practice is: how close is

integral I in equation (72) to the value 1?2
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The basic problem with the quadrature approach in high
numbers of dimensions is that if § samples are taken per
dimension of the integrand, the total number of samples required
in M dimensions is SM. For example, just S = 2 samples per
dimension requires, in M = 16 dimensions, 66,000 evaluations of a
complex integrand which is a function of M variables. This éan

be a very time-consuming task and require considerable storage,

depending on how large M gets.

Define the residual integrand of equation (72) as the actual
integrand multiplied by exp(s’s/2); this residual integrand is
presumed to be 1 for all s under the extrapolation assumption
leading to equation (69). On the other hand, Gauss quadrature,
using S samples in a particular dimension, is effectively fitting
the residual integrand with a polynomial of order 25-1 in that
variable, which affords a rather high-order fit for few samples.
In M dimensions, it means that the Gauss quadrature procedure is
exact for residual integrands of the form

%:na(pl,...,pm) LI s (73)
for any constants {a(pl,...,pM)}, where integer Pp £ 28-1 for all
m=1:M. This potentially high order of accuracy makes the use of
Gauss quadrature on equation (72) a strong candidate for
increased accuracy of the SPA if the large number of integrand

evaluations can be tolerated.
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FIRST-ORDER CORRECTION TERM TO SADDLEPOINT APPROXIMATION

The first-order (FO) correction term to the SPA (or tilted
Edgeworth approximation), that is, the O(1/N) term, is given in
reference 4, page 180. To develop it fully for these purposes,
the following definitions are employed here. For RV x with MD
CGF Xy and MD field point x of interest with corresponding SP

-~

X = X(x), let j,k,A,m = 1:M, and define

22X (N)
Xam = 3%, ax | (74)
2l DY
23X, (N) i
X = ’ (75)
kXm axk axx axm i
%X, (V)
X. = . (76)
jkRm axj axk axx axm i
Also, define the two MxM matrices
H = [Xy.] T = [T, ] =H" (77)
m® ! Xm :
H is the HM of the MD CGF Xy of RV x, evaluated at the SP i.
Then, the FO-corrected joint PDF at MD field point x is
pl(x) = po(x) [1 + Cq * C3, * C3b] ’ (78)

where
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_ exp(xx(i) - i' x]
Polx) = [(2n)“ det(m)’5 79

is the usual (zeroth-order) SPA, and parameters

Cy = 2 YT Xipeo T om (80)
478 45 Nkam Tik Tam ¢
1
°3a. =~ § %;; %%% Xkxm Xkan Tkx Tok Tam - (81)
1
C3p = - T3 2 . Y . X X T Teq T . (82)
3b 12 5 3 kA %an Tkk Txa Tmp

———

All three terms (c4, C34¢ c3b) are O(1/N) if N independent Rvs
have been added to form RV x. However, the results above hold
for any RV x, no matter how formed. The two component terms,

C3a and C3pr €annot be combined together, in general.

APPLICATION TO WEIGHTED SUMS OF RANDOM VARIABLES

Let N-dimensional RV w = [wl ceo wN]' be a collection of N

independent RVs, with possibly different statistics for each RV

W n=1:N. 1In particular, let individual RV v have FO MGF Py

n
and FO CGF Xy for n=1:N. The MD RV x of interest is formed
n
according to linear transformation
X=aw, a= [amn] . (83)

Arbitrary array a is MxN, M < N, and of rank M. Then, RV x is
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composed of M dependent RVs with joint MGF

u (X\) = eXp(X" %) = exp(X" a W) = exp(b(N)7 W)
where Nx1 vector
b(A) = a’ A = [bl(x) . bN(x)] ,

with elements

M
b () = g;; ap, A\, for n=1:N .

Notice that

abn(k)

5% = ®mn for m=1:M , n=1:N .
m

Using the independence of RVs {wh}, there follows for the

joint MGF of x from equations (84) through (86),

2
z

e = TT exp(b,(\) vo) =TT a, [bn(x))

n=1 n;l n

The joint CGF of RV x is then
T x, (o)
X, (A\) = b _(X)
x =1 an n

There follows, upon use of equation (87),

axx(X) N ( J
— E : a " Ib_(X\) for m=1:mM ,
axm n=1 mn an n

4

(84)

(85)

(86)

(87)

(88)

(89)

(90)
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2

37X, () N

_—x—'—— = " =1 - .

By 3N n:=1: %n 2mn Xwn(bn(k)) for X=1:M , m=1:M . (91)

Therefore, the M simultaneous equations that must be solved for

the sp i = Ax) at MD field peint x are

=

2} % xén[bn(x)) = x for m=l:n . (92)

In order to develop explicitly the component terms in

equations (80) through (82), define, for n=1:N,

S R I T XL0) IR WP oy

n n n

These 3N quantities only need to be computed at the SP A. The

use of equations (93) and (74) in equation (91) yields
N
Xgpm = %;; 3gn @mn X for R=1:M , m=1:m . (94)

In a similar fashion, there follows from equations (75), (76),

and (93), for j,k,A,m = l:M,

N

Xkam = g;; ®kn 2an 2mn X3p - ' (95)
N

Xjkam = g;% %in ®kn ®xn 3pn Xgp - (96)

The three component terms in equations (80) - (82) can now be

determined. From equations (80) and (96), there follows
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1 -
€4 = § .20 2— 2jn ®kn 2% 2mn X4n Tik Trm T

jkXm n
1 N 2
-5 %;% X4p j%;% 85n Tik 2kn| - (97)

Define the NxN matrix J = [Jnn] with elements

M
Jon = 2 3y Typ 3pn fOT A0 = L:N . (98)
- Am=1 -
Then,
J=a'" T a, (99)

and equation (97) can be expressed as

N 2
E : X4n Jnn . (100)
n=1

oo| =

Cy =

This result uses only the diagonal of NxN matrix J.

Also, from equations (81) and (95), there follows

1 1 1 !
€3a = 7 8 %iﬁ %3@ — 2kn %0 ®mn X3n Z%] ®kn *xn ®mn X3n °
1 N
T Tmk Tam T T E Ly %30 Xap “nn Tnn “no - o

Define Nxl1l vector j = [j1 oo jN]' with elements
J for n=1:N . (102)

Jn = x3n nn

Then, equation (101) can be expressed compactly as
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30 = - & =-%3r 3. (103)

The final component term is, from equations (82) and (95),

1
°3pb T T 12 %;i %%% z;: %kn 2an %mn X3p Zéj %n ®xn ®mn X3p *
T . Tey T. = - -1 Z%j Xy 33 (104)
kk "X “mm 12 nn=1 X3n 3n "nn °

The total correction term of O(1/N) required for pl(x) in
equation (78) is given by the sum of components (100), (103), and
(104). The inputs required here are MxN matrix a, individual FO

CGFs {xw } of RvVs {wn} for n=1:N, and field point
n

X = [x1 Treoxylt.

The MATLAB code for accomplishing all of these matrix
manipulations is very compact once the Nxl1 chi-vectors in

equation (93) are available:

b=a’*lambda;
H=a.*repmat(chi2’ ,M,1)*a’;
J=a’/H*a;

Jd=diag(J);

j=chi3.*Jd;
cd4=chid’*(34.°2)/8;
c3a=-j’'*J*5j/8;
c3b=-chi3'*(J.“3)*chi3/12;
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EXACT M-DIMENSIONAL PROBABILITY DENSITY
FUNCTIONS FOR SPECIAL TRANSFORMATIONS

Let x be a column vector of M real RVs with joint PDF Dy
Also, let the real, nonrandom MxM matrix A be of rank M. Then,
the joint PDF py of the column vector of M real RVs y = A x can

be determined immediately as

Py (Y) = px[x -2t y]///ldet(A)I ' (105)

where y = [yl .o yM]' is the nonrandom field point of interest.
It is desired to extend this exact result for the PDF of RV y to
matrices A of size MxN of rank M, where N may be (much) larger
than M. This extension is not achievable for all possible A
matrices, but can be accomplished to yield exact PDFs of RV y for

linear transformations A of a particular form.

Let v(1),...,V(M) be arbitrary Mxl real column vectors that

are linearly independent of each other. Form the MxN matrix

A

[}

[d1 V(n(1))  d, V(m(2)) e+ dy V(m(N))] , (106)

where N > M and dl' dz,..., dN are N arbitrary real scalars,
while m(1), m(2),..., m(N) are N arbitrary integers in the range
{1,M]. To make the rank of A equal to M, every vector V(1)
through V(M) must appear at least once in matrix A in equation
(106). Alternatively stated, the set of N integers m(1l), m(2),

e+, M(N) must include every integer in the range [1,M] at least

once.
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Let x = [xl se xN]', where the N scalar RVs {xn} are
statistically independent of each other but are not necessarily
identically distributed. Consider the Mx1l RV obtained by the

linear transformation

N

y=Ax=§_:_,idn Vin(n)) x = [y, -+ w17 . (107)

where explicit use of equation (106) has been made. Now,

h
[y
-e

let S1 denote the set of n values where m(n)

let SM denote the set of n values where m(n)

]
=

(108)
Then, equation (107) can be expressed as

M
Y=V(1) Y d x_ + - +vm) Y 4 x =) o Vvim) w_, (109)
nes1 non nesM non m=1 n

where the M RvVs {wm} are defined as

Vo= & d x  for m=1:m . (110)
nes
m
The M scalar RVs {wm} are statistically independent of each
other because sets Sl""’SM' defined in equation (108), are
disjoint and non-empty; therefore, no common RVs of set {xn} can
appear in two different RVs of set {wm}. The FO characteristic

function (CF) of the m-th RV o follows immediately from equation

(110) as

£ (E) = £, (d_E) for m=1:M , (111)
wm 1:5,. xn n
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where fx is the CF of RV X n=1:N. The one-dimensional Fourier
n
transform of CF £, Yields the FO PDF p_ of RV w for m=1:M.
m _ m

Express Mxl column vector V(m) in terms of its components as

V(im) = [vl(m) s vM(m)]' for m=1:M , (112)

and let Mxl column vector w [w1 o wM]’. Also, let MxM matrix

vi(l) e v (M)
Vo= [V(1) +«+ V(M)] = : 2 (113)

(1) oee vy (M)
Then, equation (109) can be expressed as
y=Vw, or w=1YV Yy =By ; (114)

that is, there is a one-to-one transformation

w, = Y bm ¥y form=l:M , B =[b 1. (115)

M
m=1 - - -

Now, guided by result (105), the joint M-th order PDF of RV y

in equation (114) is immediately given at field point y by

pW(V'1 y]

Pyl¥) = Pulyyse-wr¥y) = Taeermy] =

M

1
= T@ermiT J ] pwm(bml g+t o+ by vy (116)

m=1

upon use of the independence of the M RVs {wm} defined in

equation (110).
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In order to utilize equation (116), it is necessary that each
FO PDF pwh(w) be capable of evaluation at arbitrary argument w;
but this quantity is available by means of a one-dimensional
Fourier transform of equation (111):

Py (W) = 5= _[ dE exp(-iwk) fwm(z) for m=1:M . (117)

For a given or specified set of values Yy = (yl,...,yM) in
equation (116), argument LA bm1 y; + 00 4+ me yy for PDF pwm
can be computed, and single integral (117) can be evaluated for
this particular W, Value. This basic integral must be redone for

each m in the range m=1:M for use in equation (116). An exact

value for the PDF py(y) of RV y in equation (107) can be obtained

in this fashion.

SPECIAL CASE

Let the N integers m(1), ++«+, M(N) in equation (106) consist
of K 1s followed by K 2s ... followed by K Ms, for a total of
N = KM integers. Then, set Sp in equation (108) is the set of

integers
sm = {1+(m~1)K,..., mK} for m=1:M . (118) -

Use of this relation in equation (111) yields CF

mK

£ (E) = f_ (d_ &) for m=1:M . (119)
wm n=lI;I;K xn n
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Furthermore, specialize to the case of independent

identically distributed RVs {xn} with an exponential PDF with

unit mean; that is, their common CF is fx () = (1 - :'LE,)"l for
n

n=1:N. Then, equation (119) yields the explicit CF relation

mK -1
£ (F) = [ TT (1-iza ]] for m=1:M . (120)
Y n=1+mK-K n

This result must now be subjected to integral (117) in order to

determine the FO PDFs of RVs {wm}.

As a further specialization, consider sequence dn =1 for

n=1:N. Then, equation (120) yields CF fw (&) = (1 - iF.,)"K for
m
all m=1:M, and equation (117) yields closed-form PDFs
K-1
p, (w) = L —=8XL¥) y(y) for m=1:M , (121)

m

where U is the unit-step function. This result can be applied ‘in

equation (116) for the joint PDF py(y) upon use of B = vl.

Alternatively, consider the complete scalar sequence {dn} to
be composed of M groups of K scalars each. Let each group

contain J (= K/2) +l1s and J -1s, K even. Then, equation

(120) yields CF £, (&) = (1 + £5)"%2 = (1 + £2)"9 for all m=1:M,
m
and equation (117) yields FO PDFs
exp(=|w|) 3=1 o5 ,_. (2|w|)j
p, (w) — J) —s+— for m=1:M (122)
v 22T 4z [ 31 ) 37

for all w. Again, direct application in equation (116) gives

exact results for joint PDF py(y) at any argument y.
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SUMMARY

The dominant saddlepoint in the M-dimensional region of
analyticity of the original moment generating function is located
on the real axes of X spaée, if it exists at all. The numerical
search for this saddlepoint is alleviated by the fact that the
real integrand of interest has positive curvature (a bowl-like
behavior) in the M real dimensions with a single minimum in the
region of analyticity. The first-order correction term to the
standard saddlepoint approximation requires the calculation of
numerous fourth-order partial derivatives of the joint cumulant
generating function of the random variables of interest; however,
these calculations can be limited to the saddlepoint locaiion

alone.
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APPENDIX A — BRANCH POINT EXAMPLE
Consider the one-dimensional PDF and MGF pair:

Y
p(u) = u r?ig{;u) for u > 0, v > -1 ;

u(X)

(1 - 0"Vl gor A, < 1. (A-1)

p(xr) is positive real for xr < 1. The AC of x(A) has a BP at
at A = 1 when v is not an integer. Use this AC of u(\) to get

the PDF expression

p(u) = T%E j dx exp(-ur)/(1-3) V1 (A-2)
c

where BC C passes to the left of \ = 1.

Let u > 0. Also, let -1 < v < 0 for now. Wrap contour C
around the BP at XA = 1, making a keyhole contour centered on the
positive-real XA-axis; this equivalent contour is the steepest
descent contour. The infinitely small circular contour around

A

1l yields a zero contribution in the limit because v < 0. Let

A

1l + r exp(i¢); 1 — X = -r exp(i¢) = r exp(i¢-in).

When ¢ = m, 1 - X =1 > 0 and (1-3) *! is positive real, as

required. On the upper line integral, ¢ = 0, giving (l-)\)\’+1 =

v+l exp[-in(v+l)]; on the lower line integral, ¢ = 2n, giving

(1-X)v+1 = V1 explinm(v+1l)]. Substitution into equation (A-2)

yields, for u > 0,




+®

expl-u(l+r)]

1
p(u) = —5— | dr
i2n £+ rv+1 expl-in(v+1l)]

+ complex conjugate

- exp(-u) Re[exp[ingv+l)] r(—v)]

n 1 -V
u

sin(n(v+1))
n

v
T(-v) = u  exp(-u) (A-3)

=u’ exp(-u) T(v+1)

upon use of reference 3, equation 6.1.17. Now, use AC on v to
extend this result to all v > -1. This is an exact approach and

result; it returns equation (A-1), as expected.

On the other hand, the SPA uses the SP of the integrand of
equation (A-2); namely, ¥(X,u) = exp(-ur)/(1-7\)"*! at location
A(u)

1 - (v+1)/u for u > 0. The resulting SPA is

exp(v+l) v
u- exp(-u) foru >0, v > -1 . (A-4)
(2m)% (ve1)V*E

Pylu) =
This form is identical to PDF p(u) in equations (A-1) and (A-3)
except for a scale factor. The ratio po(u)/p(u) is independent
of u and approaches 1+ as v increases; the ratio is

e//(2n) = 1.0844 at v = 0, and is ez/(4/n) = 1.0422 at v = 1.




APPENDIX B — HESSIAN MATRIX OF JOINT CUMULANT GENERATING

FUNCTION X(\A) IS POSITIVE DEFINITE FOR A REAL AND IN R”

Vector field point z = [z1 «e+ 21T is real and MD. Let p(2z)

m!
be the joint PDF of MD RV z at field point z; thus, p(z) is real,

nonnegative, and has unit volume in MD z space.

Vector A\ = [Al see XM]T is complex and MD. The joint MGF

#(X) corresponding to joint PDF p(z) is given by Laplace

transform and expectation

g(\) = j dz exp(A\T z) p(z) = E{exp(AT z)} . (B-1)
Henceforth, it is presumed that A € ROA(u); that is, Xr € Ru'
Define

gf\—- #(X) = u_(N) for m=l:M . (B-2)

m

Then, the joint CGF X(X) of RV z satisfies the relations

X(X) = 1In u(X) ,

3 ﬂm(x)
EX; X(X) = TN] for m=1:M ,
)2 umg(k) Hp(X) um(k)
Ix, on, X(N) = =~ - 200 07 for m.m=l:N . (B-3)

The MxM HM of joint CGF X(XA) is, for XA € ROA(u),

2 ﬂmm(k) ﬂm(k) um(k)
ReaE

= |—20 -
H(X) = [“m XM N ISNENIPN)




There follows, from equations (B-1) and (B-2),

T
pm(X) = I dz z. exp(A” z) p(z) for m=1:M '

T 1. -
bpg(N) = j dz z, 2, exp(\" z) p(z) for m,mel:n . (B-5)

All these integrals converge because Ar € R”.

Define (tilted PDF) function

T
Blz,\) = exP(*u(ii RLZ)  for X & ROA(y) , (B-6)

and define the quantities

() = j dz z_ B(z,\) for m=l:M . (B-7)
Then, the m,m element of matrix H(X) is, from equation (B-3),

By (N = f dz 2, z, Blz,\) - G (N) fig(\)  for m,m=1:M  (B-8)

and X € ROA(y); that is, Xr = Re(\) ¢ R”.

Now, let vector )\ be real; that is, xi = 0 and A\ = kr € Rﬂ.
It is presumed that there are no linear dependencies among

components {zm} of RV z. Also, let real Mx1l vectors

T

~ - ~ T
u(kr) = [ﬂl(xr) s uM(kr)] r a = [al co aMl ’

V=2-7(\) . (B-9)

Then, linear combination




al v # 0 for any a # 0 , with probability 1 . (B-10)

Then, the following average must be positive:

2 exp(k? z]

T v) P 7))
ﬂ()\r)

A(Xr) E<(a >0 for any a # 0 (B-11)

because the exp term and p(xr) are always positive. Upon

expansion,

A(x_) = aT E[v v’ exp(A] z)/p(xr)] a=a C(h)a>0 (B-12)

for any a # 0. Therefore, MxM matrix C(xr) is PD for kr € R”.

The m,m element of C(Xr) is, using equations (B-9) and (B-6),

Co ) = E[vm v exp[xf z)/p(xr)] =

[ a2 [zq - 5,00 ] [2q - Bu00)] exp(AD 2) p(2)/un)) =

[ ez [z - 5,00 ] [2g - BpO0)] Bz =

- [ ez o 2y - O 2y -z )+ 500 B,00] By

= J dz Zn zE p(z,kr) - pm(kr).ﬁm(kr) for m,m=1:M . A (B-13)

It follows from equation (B-8) that

HonAp) = Cpp (A

r) for m,m=1:M , (B-14)

meaning that H(xr) = C(Xr) is a PD matrix. That is, HM H(\) of

joint CGF X(X\) is PD for X real and in R”.
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APPENDIX C — POSITIVE CURVATURE OF LOGARITHM OF INTEGRAND

Consider the one-dimensional Gaussian RV with MGF and CGF

g(\) = exp(%azkz + mx) ,
X(\) = 1n u(\) = %gzxz + m\ (c=1)
for all X; that is, Rﬂ = (-»,»)., Then, for evaluation of the PDF

at field point z, the logarithm A(\,z) of the integrand Y(\,z)

and its derivatives (with respect to \) are

1 2.2
A(Xr,z) = x(kr) - zkr 50 Xr + (m—z))\r ,

2
c Xr +m-2z,

AT (A 2) = XT(X,) - z

A"(X.,z) = X"(X) = ¢® , independent of z , | (c-2)

for all xr. Observe that A"(kr,z) > 0 for all xr, provided that
az > 0; that is, the curvature of A(Xr,z) is positive for all xr.
Therefore, A(xr,z) can only have a single minimum on the real X\

axis, which occurs at A(z) = (z—m)/cz.
For the next example, consider the one-dimensional PDF
exp(-z) for z > 0. The pertinent A-domain functions are
#ON) = 1/(1-N0) 0 A ,z) = -ln(1-3) - zh_

ATaz) = /(=N -z, A"(A,2) = 1/(1-x )%, (c-3)

for Xr < 1; that is, R” = (-»,1). Again, curvature A"(kr,Z) > 0




for all Xr < 1, although the curvature tends to 0+ as Xr d -,
Therefore, A(Xr,z) can, at most, have only one minimum for
Xr < 1, but it may have none. For example, if z > 0, the minimum

of A(Xr,z) is at A(z) =1 - l/z; as z » 0+, then A(2) 2 ~=,

On the other hand, if z < 0, A(Xr,z) is a strictly
monotonically increasing function in Rﬂ, such that A(-=,z) = -o,
A(l-,2) = +», This last region for z (< 0) corresponds to field
points where the exponential PDF is zero; that is, z < 0 is an

unfeasible point for the PDF, or a point where the PDF is zero.

Both examples above illustrate that if A"(Ar,z) > 0 for all
xr £ R”, then A(kr,z) can have only one minimum, at most, in that

region; that is, in the neighborhood of any point Xa € R”,

~

fadd ’ l" — 2 -
A(Xr,z) = A(Xa,z) + A (xa,z) (xr-xa) + 2A (ka,z) (Xr Xa) . (C-4)

The positiveness of the last coefficient for all Xa € R”

indicates that the function A(Xr,z) has positive curvature at all

points in R”.

In M dimensions, with \ = [xl se XM]T, equation (C-4)

generalizes to
AMX_,2) 2 A(X_,2) + G(A z)T(X -\ )+1(x -2 )TH(X zZ)(X _=X_) (C-5)
r’ a’ a’ r "a’'2'%r “a a’ r "a

for Xa € R”, where Mxl gradient vector



) 3 T
G(X,2) = |53~ A(X,2) =+ =5 A(X,2) (C-6)
- = ae]
and MxM HM
H(X,2) = |55 MX,2)| , m,m=1:M . (C-7)
axmaxﬁ

If matrix H(ka,z) is PD, the quadratic form in equation (C-5) is
positive for all kr # Xa; that is, A(Xr,z) has positive curvature
at Xr = Xa' If matrix H(Xr,z) is PD for all Xr € Rﬂ, then
A(Xr,z) has positive curvature at all kr € Rﬂ, and can have, at
most, one minimum in this MD region Rﬂ. Again, this minimum can
occur for some components of Xr equal to infinity, or some
components of gradient G(Xr,z) may be nonzero. These latter two
cases correspond, respectively, to the situation where the
statistical average a of interest is zero, or the integrand

Y(xr,z) has no real SP for Xr € Rﬂ.
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APPENDIX D — COMPLEX LOCATIONS OF SADDLEPOINTS

Consider PDF p(z) = exp(-z) [1 + cos(az)] for z > 0. This
PDF is nonnegative for z > 0; although its area is not unity,
scaling is irrelevant here. Let y =1 - X and b = az. Then the

corresponding MGF and CGF and their derivatives are, for kr <1

14

2y%b Ly avteby®en? L aySaeyZplion’
ﬂ(>\) = 2 ’ H (>\) = 2 2 M ()\) = 3 2 3

y(y“+b) y (y“+b) y (y~+b)

oy = L) 2yteby?ep?
u(X) 2 2
y(y“+b) (2y“+b)
8 4.2 .. 2.3 .4

X"(\) = 4y +7y b +8y“b +b (D-1)

v2 (y2+b) % (2y2+b) 2

Consider the ACs of all these functions, and observe that

x“(kr) > 0 for all Xr.

The corresponding properties for the integrand and its

logarithm are given by
Y(X,2) = p(X\) exp(-rz) ,
AlX,2z2) = 1n Y(X,2) = X(\) - Xz ,

AT(X,z) = X" (X)) =z , A"(X) = X"(X\) . (D-2)

In order to find the SPs of integrand Y(\,z), set A’(X,z) = 0 or

X"(X) = z > 0, and obtain the equation

229> - 29% + 32bg3 - bg? + 22§ - b2 = 0 , (D-3)




with A = 1 - ¢.

As an example, consider a = 1 and z = 0.1. Equation (D-3)

then yields the five SPs
i = -8.8995 , 0.4951 + i 0.70305 r 1.4547 + i 0.68369 . (D~4)

There is one real root and one complex pair of roots within the
ROA(x); that is, with xr < 1. There is another complex pair with
kr > 1, which is outside the original ROA(y). The SP at -8.8995
connects -i® to +iw directly, by means of a BC. Use of the other
four SPs requires using the AC of x()\) and the valley at A = +=,
in addition to the residue of the pole of ¥()\,z) at )\ = 1.
Alternatively, the contour could be moved to A = +® and the three
residues added; the result would be the exact PDF p(z), with no

need to resort to SPs or a SPA at all.

An example of a PDF with additional real SPs outside the
ROA(x) is furnished by the sum of three weighted, independent
unit-variance exponential RVs; namely, z = e, + e2/2 + e3/3.

The PDF and MGF of RV gz are

P(z) = 3 exp(-2z) [1 - exp(—z)]2 for z > 0 ,

ulX) =

1
(I-X)(1-x/27(1-x/3) for X <1 . (D-5)

There follows

, - 1 1
AT(X,z2) = - z + Ix* 3%+ 70% - (D-6)




The numerator of A’'()\,z) is

3 2

ATz + X (3 -62)+ X (11 2z -12) + (11 - 6 z) . {D~7)

For example, with z = 13/12, the numerator in equation (D-7) has
zeros at A\ = -1 and at A = (55 + V/217)/26 = 1.54881 and 2.68196,
all of which are on the real \-axis. The latter two SPs are
outside the ROA(w), which is Xr < 1. These SPs are the only ones

for integrand ¥(X\,z); there are no complex SPs in this example.

If desired, the original BC in the ROA(u) could be moved so
as to pass through the SP of ¥(\A,z) at A = 1.54881 when the
residue of the AC of ¥(\,z) at pole location A =1 is also
accounted for. Alternatively, the BC could be moved further to
the right so as to pass through the SP of ¥Y(X,z) at X\ = 2.68196
when the residues at both A = 1 and ) = 2 are also accounted for.
Finally, the BC could be moved off to the valley of Y(X\,z) at
A = +», giving an exact result for the PDF in terms of the three

residues of the AC of ¥()\,z) at pole locations X = 1, 2, and 3.
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APPENDIX E — ABSENCE OF SADDLEPOINT

EVEN THOUGH z IS A FEASIBLE FIELD POINT

Consider the one-dimensional PDF and MGF pair:

p,(z) = exp(-z) for z > 0 ; (E-1)
mn (1+z)™

u_(X) = dz &Xpl=2(1-M)] _ exp(w) E (w) , o= 1-X\ (E-2)
m ‘(l; (1+z)m m v

upon use of reference 3, equation 5.1.4. The integral in
eqﬁation (E-2) converges for Xr €1 form > 1, and for kr < 1 for
m < 1. (Strictly speaking, pm(z) does not have unit area; its
area is ym(O) = e Em(l). However, absolute scaling is not

important to the concepts of this appendix.)

A useful recursion is

upN) = 227 1 - e gy (N] forms 1, (E-3)

along with starting values

1

po(k) =5 pl(X) = exp(w) El(w) 2 both for w. >0 . (E-4)

In particular, for w, 2 0,

He(X) =1 - w exp(w) E,(w) , (E-5)

]
N

p3(N) [1 - o+ 0 exp(w) El(w)] i (E-6)




The ACs of all these functions behave as 1/(1-X) as A » =,

according to reference 3, equation 5.1.51,

Additional useful relations are

Ha(X) =g 2 (N = (N, (E-7)
gy (1) = =2~ form s> 1 (E-8)
m m-1 ’

pI(l) = —t —— form> 2 (E=9)
m (m-2)(m-1) ¢

The derivative of the corresponding CGF is

(1) = ”é(l) = form > 2 (E-10)
Xm T u (1) T m-2 .

Therefore, z = 1/(m-2) is a breakpoint as to whether a real SP of

integrand ym(X) exp(-zX) can exist for m > 2. 1In addition,

m-1
(m-3) (m-2)2

X2 (1)

form > 3, (E-11)

" - 2
um(l) = m=3) (2] (m=1) form > 3 . (E-12)

For m = 2, any z > 0 is allowed: a real SP always exists.
That is, integrand Y(xr,z) = yz(xr) exp(—zxr) always has a

minimum for Xr <1, when z > 0.

From now on, let m > 2. Then, there can be no real SP of




integrand Y(),z) = pm(X) exp(-z\) if z > 1/(m-2) because of
relation (E-10). That is, the curve of Y(Xr,z) versus Xr is
still monotonically decreasing at Xr =13if z > 1/(m-2). This
feature is illustrated in fiqgure E-1 for m = 3. The slope of

Y(xr,z) at Xr = 1 is, by use of equations (E-8) and (E-9),

expire) [L- . z] form> 2. (E-13)

Then, the minimum of the integrand (but not a zero slope) is
realized at the boundary of definition, namely, at Xr'= 1. The
point A = 1 is a BP of the AC of ym(k) because El(w) has a
logarithmic singularity at w = 0; that is, at A = 1. The product

W El(w) = 0 at w = 0.

An approach similar to appendix A can be employed here. As
an example, consider m = 3, as in equation (E-6). The AC of
p3(X) has a logarithmic BP at \ = 1 according to reference 3,
equation 5.1.11. Let z > 0 and move the BC to a keyhole contour
wrapped around X = 1 and the positive real axis; this is the
steepest descent contour. Then, since pm(X) ~1/(1-X\) as A\ » o,
the integrals on the large circular atcs tend»to zero as the
radius tends to infinity. Although El(w) has a logarithmic
singularity at X = 1, the quantity (1—>\)2 tends to zero faster,
so that the integral on the small circle around A = 1 tends to
zero as the radius tends to zero. On the upper (lower)
horizontal line, Xr > 1, El(l—k) = — Ei(A-1) +(-) in. Since the
integrals are in opposite directions, only the imaginary parts

remain, giving the exact result

E-3




+®
p3lz) = 2 $3- j dx exp(-zx) LA oyp 1y iy - S%pl=2) | (p-1g)

1+ (1+2)

2

The alternative two-sided PDF P, (2z) has a somewhat different

behavior:

P, (2) - exp(-Jz]) for all z . (E-15)

(1+]|z)™
The MGF LX) exists only for -1 £ A, £ 1. In fact,

ﬁm(k) = ym(k) + ym(-X) for -1 ¢ kr <1. (E-16)

For m = 3, as x varies in [-1,1], integrand Hn (X ) exp(~ zx )
varies over a finite range; it does not realize a minimum when

|z] > 0.61. Therefore, no real SP exists for this integrand when

z] > 0.61.

0.3

0.25

0.2

¥(k,2) o5

0.1

0.05

Figure E-1. Integrand of Inverse Laplace Transform for m = 3




APPENDIX F — HESSIAN MATRIX OF 1ln v(X) IS

NONNEGATIVE DEFINITE FOR A\ REAL AND IN RY

Let g(u) be a real nonnegative scalar function of MD vector

u; g(u) need not have finite volume. Define MD )\ = xr + i Xi and
v(\) = I du exp(-AT u) g(u) . (F-1)
Let this MD integral converge for Xr S,RY° Define
9

B ¥(X) = v (X\) for m=1:M . | (F=2)

There follows

21 v = B for a .
T 1n v = or m=1:M , P
LR r(X)
and
52 Yam( A TN vy (V)
EX;—EX; In v(X) = YO0 T Y0 y0g for mym=l:m . (F-4)

The MxM HM of 1ln y()) is, for Xr € Ry,

) 32 A YmE(X) YplA) YE(X)
From equations (F-1) and (F-2), there follows
T
ym(X) = - I du u, exp(-A~ u) g(u) for m=1:M (F-6)
and
T
ymm(X) = I du u,ouy exp(-X~ u) g(u) for m,m=1:M . (F-7)




Now, for Re()\) ¢ Ry, define (tilted) function

T
& - &Xp(=A" u) g(u) -
g(u,x) = Y0 (F-8)

and the quantities
vm(X) = j du u, g(u,\) for m=1:M . (F-9)
Then, the m,m element of HM H(\) in equation (F-5) becomes

Apg(N) = j du up uy §lu,A) - S (0 Vp(X)  for m,m=1:m . (r-10)

Observe that the function §(u,\) defined in equation (F-8)

has unit volume in u for A = Xr € Ry; that is,

J du §(u,\) = 1 for all A_ ¢ & (F-11)

Y .
Thus, §(u,xr) has the properties of a legal PDF of argument u for
any Ar € Ry; in particular, §(u,xr) is real, nonnegative, and has
unit volume in MD u space. Therefore, considering §(u,xr) as a

MD PDF in u, the mean of the corresponding m-th RV um(xr) is
Sp(h) = f du u §(u,A_) for m=l:m , (F-12)
while the covariance of the m,m pair of RvVs u (A, u (X)) is

UmE(xr) = J du u, u,

§(u,xr) - %m(xr) %E(Xr) for m,m=1:M. (F-13)

But, the covariance matrix of any PDF is always nonnegative

definite because with random vector w = u(kr) - v(Xr)




[ul(kr) - ﬁl(kr) s uM(Xr) - %M(xr)]T, the average

T

E (af w)% = aT BE(w w') a = aT G(x) a 2 0 (F-14)

for any Mxl real vector a. ﬁ(xr) = [ﬁmm(xr)] is the MxM

covariance matrix of RV u(xr) and must be nonnegative definite.

Comparison of equations (F-10) and (F-13) reveals that

ﬁmE(xr) =0 (X ) for m,m=1:M . (F-15)

Therefore, matrix ﬁ(xr) = ﬁ(xr) is nonnegative definite; that is,
the HM H(\) of 1n v(X) is nonnegative definite for A real and in

R_.

y

As a first example, consider

g(u) = 6(ul - zl) ce G(uM - zM) ’ (F-16)
for which

¥(X) = exp(-AT A\) for all X . (F-17)
The HM of 1n v(X) (= -AT z) is zero for all X; this HM has M zero

eigenvalues and is nonnegative definite for all \.

The second example is

g(u) = éi(ul - zl) U(u2 - zz) U(uM -z (F-18)

w

for which




and

for

The

The

M
Y(X\) = exp(-AT z) l:l(xm) for Re(\ ) > 0 , m=2:n ,

Xl is arbitrary. fThere follows

M
In v(\) = AT z -y In(x) ,
n=2

which the gradient vector is

T
G()\) = ["zl "zz-l/)\z e -ZM‘l/)\M] .
MxM HM of 1n vy(\X) is then
B(X\) = diag[o 1/x§ . 1/x§]

matrix ﬁ(xr) has one zero eigenvalue and M-1 positive

eigenvalues; thus, ﬁ(xr) is nonnegative definite.

(F-19)

(F-20)

(F-21)

(F-22)
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